

Biophysics Core

Presenter: Hyun Lee, Ph.D.

05.10.2018

Biophysics Core Instruments

Surface Plasmon Resonance (SPR)

- Association rate (k_a)
- Dissociation rate $(k_{\rm d})$
- Binding affinity: pM ~2 mM

Circular Dichroism (CD)

- Protein secondary and tertiary structure (α-helix, β-sheet, random)
- Conformational stability of a protein at varying conditions
- Comparing the structures of protein vs. mutants

Dynamic Light Scattering (DLS)

Isothermal Titration Calorimetry (ITC)

- Estimate protein molecular weight
- Observe protein oligomerization
- Determine the quality of a protein sample for structural studies.

- Association constant (K_a)
- Reaction stoichiometry (n)
- Heat capacity (ΔCp) of the reaction
- Binding free energy (ΔG)
- entropy (Δ S) and enthalpy (Δ H)
- **Binding affinity:** low nM ~5 mM

Analytical Ultracentrifugation (AUC)

- Determine the molar mass of proteins and complexes
- Determine the number of species in a sample
- Determine the stoichiometry of complexes
- Analysis of self- and hetero-association
- Binding constants: mid nM 1 mM

Biophysics Core Instruments for Protein Production

Large-scale culture Temp. controlled Incubator Shaker

Cell lysis

Emulsiflex C5

Sonicator

AKTAxpress FPLC

Protein concentration measurement

NanoDrop

Protein Purification

AKTA Purifier FPLC

SPR Basic Principles

Surface Plasmon Resonance (SPR)

- One interacting partner ("ligand") is attached to the surface of a chip
- the passing of a sample containing the second interaction partner ("analyte") over the surface of the chip.

- Binding of molecules to the sensor surface generates a response that is proportional to the bound mass
- The changes in angle of the reflected light is measured in real time.
 - 0.1° angle change = 1 ng/mm² = 1000 Response unit (RU)

SPR Instruments: Biacore T200

Sensor Chip types

Sensor Chip:	<u>CM7</u>	<u>CM5</u>	<u>CM4</u>	<u>CM3</u>	<u>C1</u>	<u>SA</u>	<u>HPA</u>	<u>L1</u>	<u>NTA</u>
Molecule to be immobilized									
Proteins			\bigcirc	\bigcirc	\bigcirc				
Tagged proteins									
LMW molecules, typically <1000 Da			\bigcirc	\bigcirc					
Membrane-associated molecules									
Nucleic acids			\bigcirc	\bigcirc	\bigcirc				
Carbohydrates			\bigcirc	\bigcirc	\bigcirc				
Viruses or intact cells									
Recommended choice	Good	alternative	3						

SPR core: CM5, SA, NTA

Covalently coupled via amine, thiol, aldehyde or carboxyl

CM (carboxymethylated dextran covalently attached to a gold surface)

C1 (low carboxymethylated surface)

Load biotinylated molecules

SA (carboxymethylated dextran pre-immobilized with streptavidin)

NTA (carboxymethylated dextran pre-immobilized with nitrilotriacetic acid (NTA))

L1 (lipophilic groups are covalently attached to carboxymethylated dextran)

HPA (A flat hydrophobic surface consisting of longchain alkanethiol molecules)

Dissociation equilibrium constant (K_D) & rate constants (k_{on} & k_{off})

▼ Determination of dissociation equilibrium constant (K_D)

- immobilize a target protein on sensor surface (ex, CM5 chip)
- flow a series of increasing concentration of compounds (0 100 $\mu\text{M})$
- fit the data for steady-state affinity
 - uses RU signals at the steady state
- reflects binding affinity of a compound

▼ Determination of rate constants (kon & koff)

- fit the same data for kinetics
- usually fast on-rate and slow off-rate are preferred for good inhibitors

Testing concentration range

Same binding affinity, but very different on and off rates

Various SPR Applications

▼ The real-time detection and monitoring of the biomolecule interactions

- protein & protein
- protein & peptide
- protein & DNA/RNA
- protein & Lipid
- protein & compound

It can provide quantitative information on

- binding specificity: search for binding partners screen for inhibitors
- binding affinity (K_D): strength of binding
- kinetics (k_{on} & k_{off}): rates of reactions complex formation (k_{on}) complex dissociation (k_{off})
- concentration: nanomolar concentration can be measured in both purified molecules and complex mixtures

▼ This technique can also be applied to every stage of drug-discovery process

- mid-throughput automated compound screening
- hit confirmation and validation
- hit characterization via kinetics
- mechanism of action (Competition SPR)

SPR Applications: Example 1

WT-Protein vs Mutant protein interaction

▼ A Protein binds to a compound

- 10,000 compounds were screened
- one very potent compound was identified
- target protein was identified as A protein

Questions:

- 1. Where does the compound bind?
- 2. How would a mutation affect the binding?

▼ SPR Experiment Set1

Blank

• Sensor Chip: CM5

Immobilized proteins:

FC1: Reference (ethanolamine) FC2: WT-FL-A protein FC3: WT-D1-D2-A protein FC4: WT-D2-D3-A protein

Analytes: Compound

▼ SPR Experiment Set2

• Sensor Chip: CM5

- Immobilized proteins:
 FC1: Reference (ethanolamine)
 FC2: WT-D1-A protein
 FC3: Mt-FL-A protein
 FC4: Mt-D1-A protein
- Analytes: Compound

SPR Applications: Example 1 continued WT-Protein vs Mutant protein interaction

SPR Applications: Example 2

Two different targets binding to a Protein

(Hayek et al., Nature Medicine, 2017)

SPR Applications: Example 3 Competition SPR

SARS-PLpro

Mixed-type

Noncompetitive

AICc

-49 (α=2.6)

-42

0.5

0.4

0.3

S = 29.6

S = 66.7

S = 100

S = 150S = 200

S = 300

10

4 in the active site of the MERS-PLpro.

20

Compound 4

Kinetic mode (K_i, µM)

Mixed inhibition (11.5)

Competitive inhibition (7.6)

30

Mode of Inhibition studies

- Enzymatic assay results had ambiguity.
- needed an alternative method to clarify this.

Questions:

1. Will compound 4 bind to MERS-CoV PLpro in the active site?

(Lee et al., ACS Chemical Biology, 2015)

SPR Applications: Example 4

Compound Screening for drug candidates

Resources Center

(Lei et al., Bioorg. Med. Chem, 2015)

SPR Applications: Example 4 continued

SPR assay plate set up using liquid handler

SPR Applications: Example 3 continued

SPR result summary

SPR Applications: Example 4 continued

hit characterization via kinetics by SPR

FIG. 4. A k_{on}/k_{off} map of lead inhibitor compound series binding to CD80.

- A total of 259 lead compounds belonging to five chemically related series (AĐE) were analyzed.
- Plots of log (*k*a) against log (*k*d) are shown.
- The dotted lines indicate isometric affinity diagonals.
- "Ideal" binding characteristics (most **rapid** association and **slowest** dissociation) would appear in the top left quadrant of the map.

(Stefan Lofas, ASSAY and Drug Development Technologies, 2004)

Research Resources Center

1. Surface Plasmon Resonance

SPR (Biacore T200)	Internal UIC	External Academic	Non- academic	Unit
Instrument_Biacore T200_self-run	\$200.00	\$250.00	\$400.00	1 day
Instrument_Biacore T200_assisted-run	\$400.00	\$500.00	\$800.00	1 day
Service_Trouble shooting/Experimental consults	\$50.00	\$62.50	\$100.00	1h
Service_SPR Data Analysis	\$50.00	\$62.50	\$100.00	1h
Service_Reagent/screening preparation	\$50.00	\$62.50	\$100.00	1h
Service_Compound cherry picking	\$30.00	\$37.50	\$60.00	0.5h
Training_Biacore T200_1 person	\$200.00	\$250.00	\$400.00	1 person
Training_Biacore T200_2 people in a group	\$150.00	\$187.50	\$300.00	1 person
Training_Biacore T200_3 people in a group	\$130.00	\$162.5	\$260.00	1 person
Training_Biacore T200_4 people in a group	\$115.00	\$143.75	\$230.00	1 person
Training_Biacore T200_5 people in a group	\$100.00	\$125.00	\$200.00	1 person
Training_SPR Data Analysis_Basic	\$50.00	\$62.50	\$100.00	1h
SPR Research project collaboration	contact Hyun Lee (danielhl@uic.edu)			

2. Other Biophysical Instruments

Other Instruments	Internal UIC	External Academic	Non- academic	Unit	
Instrument_AUC	\$390.00	\$630.00	\$787.5	per run	
Instrument_CD	\$25.00	\$31.25	\$50.00	1 h	
Instrument_Emulsiflex	\$11.25	\$14.06	\$22.50	30 min	
Instrument_ITC	\$20.00	\$25.00	\$45.00	1 h	
Instrument_DLS	\$20.00	\$25.00	\$45.00	1 h	
Instrument_PerkinElmer_Victor3V plate reader	\$20.00	\$25.00	\$45.00	1 h	
Instrument_Centrifuge_Sorvall LYNX 4000	\$7.50	\$9.40	\$15.00	30 min	
Training_CD, Emulsiflex, DLS, ITC	\$50.00	\$62.50	\$100.00	1-2 hours	
Training_AUC	\$250.00	\$312.50	\$500.00	1 person	
Training_ Data Analysis_CD, DLS, ITC	\$50.00	\$62.50	\$100.00	1 h	
Training_ Data Analysis_AUC	\$100.00	\$125.00	\$200.00	1-2 hours	
User Assistance	\$50.00	\$80.00	\$120.00	1 h	
Research project collaboration	contact Hyun Lee (danielhl@uic.edu)				

3. Protein over-expression and Purification

Protein Purification	Internal UIC	External Academic	Non- academic	Unit
Transformation into DH5a (or XL1) cells_Option	\$50.00	\$62.50	\$100.00	1 plasmid
Transformation into Rosetta2(DE3) or BL21(DE3) cells_Option	\$50.00	\$62.50	\$100.00	1 plasmid
2L culture_Protein purification_Affinity column (Ni-NTA_HisTrap) → <mark>Basic</mark>	\$1,000.00	\$1,250.00	\$2,000.00	1 purification
Protein purification_tag-cleavage_reload (Ni-NTA) _Option	\$250.00	\$312.50	\$500.00	1 purification
TEV_protease_Option	\$50.00	\$62.50	\$100.00	1 purification
SUMO_protease_Option	\$50.00	\$62.50	\$100.00	1 purification
Protein_purification_Extra_column_Ion-xchange_Option	\$250.00	\$312.50	\$500.00	1 purification
Protein_purification_Extra_column_Size-Exclusion (Superdex 75 or Superdex 200) _ <mark>Option</mark>	\$350.00	\$437.50	\$600.00	1 purification

4. Structural study collaboration by X-ray crystallography & Cryo-EM → Key step is protein purification for both

X-ray crystallography

Protein purification (~10 mg/mL) Set up Crystal Screen by Tecan liquid handling robot \downarrow Set up Crystal with further optimized condition by hand \downarrow Diffract crystals at Argonne \downarrow Solve structures

UICentre project is in process for X-ray

ITR project is in process for X-ray

Cryo-EM

- Protein purification (0.005 1 mg/mL, >100 nM) ↓ Optimize buffer condition ↓ Screen by Negative staining ↓ Get Cryo-EM images (U. of Chicago) ↓ Solve structures (U. of Chicago)
 - ITR project is in process for Cryo-EM

South Korea (M.S.& work)	Ohio State University (Ph.D)	UIC (Postdoc & Res.Assi.Prof.)	UIC (Biophysics core director)
Protein NMR 🔿	Protein NMR/SPR/X-ray	HTS/SPR/X-ray	SPR/X-ray/Cryo-EM
1 NMR structure	3 NMR structures	3 X-ray crystal structures	Present/ Future
(Lee et al., <i>JBC</i> 2000)	(Lee et al., <i>Mol.Cell</i> 2008) Featured Article (Mol. Cell); Editor's Choice (Science 321, 17); Editor's Choice (Sci. Signal. 1, ec230)	 (Lei et al., ACS Chem.Biol. 2015) (Rice et al., Bioorg.&Med.Chem. 2016) (Lee et al., Antiviral Res. 2017) Tecan EVOware/Liquid Handling Workshop SPR Advanced data analysis CCP4 Workshop for crystallography at Argonnal A	(Keystone Cryo-EM symposium, Feb.5-8)

(24 publications)

How do you start using Biophysics Core services?

1. SPR (Biacore T200)

1. Self-run:

- Get a training
- An assisted-run for the very first day (A staff can watch the whole time)
- Become an approved user

2. Assisted run :

- (i) Assisted without collaboration
 - Instrument charge: \$400/day
 - Staff time: \$50/hour (research on the topic, sample preparation, trouble shooting and data analysis.)
- (ii) Assisted with collaboration
 - Instrument charge: \$400/day

2. Other Biophysics core instruments: ITC, DLS, CD and AUC

3. Protein Purification

Contact Hyun Lee for consult and discussion (danielhl@uic.edu)

4. Structural study

Contact Hyun Lee for consult and discussion (danielhl@uic.edu)

